Investigation of metal binding and activation of Escherichia coli glyoxalase I: kinetic, thermodynamic and mutagenesis studies.
نویسندگان
چکیده
GlxI (glyoxalase I) isomerizes the hemithioacetal formed between glutathione and methylglyoxal. Unlike other GlxI enzymes, Escherichia coli GlxI exhibits no activity with Zn(2+) but maximal activation with Ni(2+). To elucidate further the metal site in E. coli GlxI, several approaches were undertaken. Kinetic studies indicate that the catalytic metal ion affects the k (cat) without significantly affecting the K (m) for the substrate. Inductively coupled plasma analysis and isothermal titration calorimetry confirmed one metal ion bound to the enzyme, including Zn(2+), which produces an inactive enzyme. Isothermal titration calorimetry was utilized to determine the relative binding affinity of GlxI for various bivalent metals. Each metal ion examined bound very tightly to GlxI with an association constant ( K (a))>10(7) M(-1), with the exception of Mn(2+) ( K (a) of the order of 10(6) M(-1)). One of the ligands to the catalytic metal, His(5), was altered to glutamine, a side chain found in the Zn(2+)-active Homo sapiens GlxI. The affinity of the mutant protein for all bivalent metals was drastically decreased. However, low levels of activity were now observed for Zn(2+)-bound GlxI. Although this residue has a marked effect on metal binding and activation, it is not the sole factor determining the differential metal activation between the human and E. coli GlxI enzymes.
منابع مشابه
Mutagenesis of residue 157 in the active site of human glyoxalase I.
Met-157 in the active site of human glyoxalase I was changed by site-directed mutagenesis into alanine, glutamine or histidine in order to evaluate its possible role in catalysis. The glyoxalase I mutants were expressed in Escherichia coli and purified on an S-hexylglutathione affinity gel. The physicochemical properties of the mutant proteins were similar to those of the wild-type enzyme. The ...
متن کاملArabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli
The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG), which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI). It is a metalloenzyme which requires divalent metal ions for its activity. This diva...
متن کاملThe Kinetic and Thermal Degradation Studies of N-(4-Acetyl-phenyl)-acetimidic Acid Pyridine-3-yl ester Metal(II) Complexes
Schiff base complexes of transition metals are of particular interest to inorganic chemists because of their structural, spectral and chemical properties, which are often strongly dependant on the nature of the ligand structure. Large number of metal (II) complexes with Schiff-base ligands has been extensively studied for their interesting structural specialties, applications and properties. Th...
متن کاملEquilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli
Background: Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. Methods: In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cel...
متن کاملInvestigation into the Antibacterial Activity of Metal Complexes Derived from Substituted Chromone in Comparison with Tetracycline, and Cephradine as Standard Drugs against Escherichia coli and Staphylococcus aureus
Introduction: The chemistry of metal complexes derived from heterocyclic compounds has attracted considerable interest due to the broad range of pharmacological activities of such compounds. The important pathogens such as Escherichia coli, and Staphylococcus aureus are wildly caused many diseases. So antibacterial activity of Zn (Ⅱ), Ni (Ⅱ), Co (Ⅱ) and Cu (Ⅱ) chromone complexes against two kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 377 Pt 2 شماره
صفحات -
تاریخ انتشار 2004